一次函数的应用课件
发布时间:2026-01-26一次函数的应用课件(合集十一篇)。
♥️ 一次函数的应用课件 ♥️
师:同学们,今天这节课我们一起来研究一次函数的复习与思考给我们提出的六个问题,请大家分成八个小组,合作讨论研究问题。
〖评析〗教师深入到各个小组,参与或者引导讨论研究。让每一个小组成员尽可能的参与进来,发挥每个学生的主观能动性.
师:为了研究变化的世界,我们引入了函数,在同一变化的过程中两个相互制约、相互依存的量x、y满足什么条件时y是x的函数?举一些函数的实例.
生:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应.那么我们就说x是自变量,y是x的函数.如果当x=a时y=b,那么b叫做当自变量值为a时的函数值.
师: 能否举例说明?
生:例如:以60千米/小时的速度匀速行驶汽车的行驶里程s与行驶时间t之间,时间t是自变量,里程s是t的函数.
生:在一些用图或表格表达的问题中也能看到两个变量间有这样的关系.如心电图中,时间t是自变量,心脏电流y是x的函数.
生:还有如人口数量统计表中,时间年份x是自变量,人口数量y是x的函数.
师:很好,同学举的例子都不错。那能否举例说明函数有哪几种表示方法,它们各有什么优特点?
生:例如:在一根弹簧下端悬挂重物.改变并记录重物的质量,观察并记录弹簧长度的变化,如图表所示:
弹簧长度(cm)10 11 12 13 14 15 16
重物重量(kg) 0 2 4 6 8 10 12
如以上这种表示两个变量间函数关系的方法就是列表法.
生:观察分析表格中数据,探索它们的变化规律.发现弹簧不挂重物时长为10cm.每增加2kg重物弹簧伸长增加1cm.如果我们用x表示重物质量,用y表示弹簧长度,则它们之间存在关系式: y= x+10这种以写式子的形式表示函数两个变量关系的方法叫解析式法.
生:如果我们在直角坐标系中,把表示中每组对应的x、y描点,用光滑曲线将这些点连结起来,构成一幅图.这种用图来表示函数中两变量关系的方法叫图象法.
师:刚才同学们说得很好(板书三种表示方法),接下来我们讨论一下三种表示方法的优缺点.
生:用列表法表示函数,直观准确但不完全.
生:用解析式法表示函数,准确完全但不直观.
生:用图象法表示函数,直观形象但不够准确也不太完全.
〖评析〗在表示函数时,要根据具体情况选择适当的方法,有时为全面地认识问题,需要几种方法同时使用.
l 师:举例说明一次函数y=kx+b的常数k对图象的影响,结合图象说明一次函数的性质,由一次函数图象怎样求出它的解析式?请四个同学到黑板上在直角坐标系上画出函数y=x+4到黑板画图,师深入小组,检查画图情况)
师:通过图像我们可以看出图像受什么因素影响?
生:由图象很容易看出一次函数解析式中常数k影响图象的倾斜.当k>0时,y随x增大 而增大;当k<0时,y随x增大而减小.
b决定直线y=kx+b与y轴的交点位置.b>0时,交点在y轴的正半轴上,b=0时,交点是原点, b<0时,交点在y轴的负半轴上.
师:(微笑)说得很好,k决定了直线的倾斜方向,b决定了直线的交点位置.
师:接下来我们讨论一下由一次函数的图象求解析式常用待定系数法.
生:因为有两个未知数,所以需要两个方程,那就需要两个点的坐标。
生:从图象上确定两个点的坐标,然后设出解析式为y=kx+b,分别把两组坐标代入解析式构成关系k、b的二元一次方程组,再解方程组求出k、b值.就可以确定一次函数解析式.
师:那一元一次方程、一元一次不等式、二元一次方程组与一次函数之间有什么关系?怎样用函数图象解方程(组)或不等式?
生:一元一次方程ax+b=0与求自变量x为何值时,一次函数y=ax+b的值为0,实际上是同一个问题,表现在图象上即直线y=ax+b与x轴交点横坐标即是方程ax+b=0的解.
生:一元一次不等式ax+b>0或ax+b<0可以看作:当一次函数y=ax+b的值大于或小于0时,求自变量相应取值范围.利用函数图象将更能直观地表现出来.
师:我们如何求两条直线的交点坐标?
生:二元一次方程组可以转化为两个一次函数在自变量取何值时函数值相等;在图象上表现为求两条直线交点坐标的问题.
师:通过本章的学习,谈谈在解决实际问题时怎样建立函数模型.
生:方程(组)、不等式与函数都是基本的数学模型,它们之间互相联系,用函数观点可以把它们统一起来.
师:我补充一点,在解决实际问题过程中,由于各种模型的优缺点,应根据具体情况灵活地、有机地把这些数学模型结合起来使用.能让我们更方便、快捷地找到结果,这也正是数形结合思想的体现.
师:下面我们就请同学们对本章的内容小结,建立本章内容框架图
♥️ 一次函数的应用课件 ♥️
教学内容:
一次函数
教学目标:
1、知识与技能:
掌握一次函数解析式的特点及意义;理解一次函数图象特征与解析式的联系规律。
2、过程与方法:
利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力。
3、情感态度与价值观:
通过学习,培养学生独立思考、合作探究,科学的思维方法。
4、法制目标:
通过对新知的应用,向学生渗透《中华人民共和国环境保护法》提高学生对法律的认识。
教学重点:
1、一次函数解析式特点
2、一次函数图象特征与解析式联系规律。
教学难点:
一次函数图象特征与解析式的联系规律。
教学过程
一、提出问题,创设情境
问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y?与x的关系。
分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x(x≥0)
当然,这个函数也可表示为:y=-6x+15(x≥0)
当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃)。
这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题。
二、导入新课
1、合作探究:
我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?
(1)、有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c?的值约是t的7倍与35的差。
(2)、一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值。
(3)、某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取)。
(4)、把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化。
通过思考分析,可以得到这些问题的函数解析式分别为:
(1)、c=7t-35。
(2)、G=h-105。
(3)、y=0.01x+22。
(4)、y=-5x+50。
2、归纳总结:
它们的形式与y=-6x+15一样,函数的形式都是自变量x的k倍与一个常数的和。
一般地,形如y=kx+b(k、b是常数,k≠0?)的函数,?叫做一次函数(?linearfunction).当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数。
3、新知应用:
某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元。在生产过程中,平均每生产一件产品就有0.5立方米污水排出,所以为了净化环境,工厂设计两种方案对污水进行处理,并准备实施。
方案一:工厂污水净化处理1立方米污水所用原材料费为2元,并且每月排污设备损耗费为30000元。
方案二:工厂将污水排到污水处理厂统一处理,每处理1立方米污水需要付14元的排污费。
问:
(1)设工厂每月X件件产品,每月利润为y元,分别求出依方案一和方案二处理污水时y与x的函数关系式。(利润=总收入—总支出)
(2)设工厂每月生产量为6000件产品时,你作为厂长在不污染环境,又节约资源的前提下应选用哪一种处理污水的`方案?请通过计算加以说明。
通过此题,可以向学生渗透《中华人民共和国环境保护法》中的第二十四条产生环境污染和其他公害的单位,必须把环境保护工作纳入计划,建立环境保护责任制度;采取有效措施,防治在生产建设或者其他活动中产生的废气、废水、废渣、粉尘、恶臭气体、放射性物质以及噪声振动、电磁波辐射等对环境的污染和危害。
第二十五条新建工业企业和现有工业企业的技术改造,应当采用资源利用率高、污染物排放量少的设备和工艺,采用经济合理的废弃物综合利用技术和污染物处理技术。第二十八条排放污染物超过国家或者地方规定的污染物排放标准的企业事业单位,依照国家规定缴纳超标准排污费,并负责治理。水污染防治法另有规定的,依照水污染防治法的规定执行。等内容,要求学生要保护环境。
三、课堂练习:
1、下列函数中哪些是一次函数,哪些又是正比例函数
8(1)y=-8x(2)y=(3)y=5x2+6(3)y=-0.5x-1
2、汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(升)随行驶时间x(时)变化的函数关系式,并写出自变量x的取值范围,y是x的一次函数吗?
四、课时小结
本节学习了一次函数的意义,知道了其解析式、图象特征,并学会了简单方
法画图象,进而利用数形结合的探究方法寻求出一次函数图象特征与解析式的联系,这使我们对一次函数知识的理解和掌握更透彻,也体会到数学思想在数学研究中的重要性
五、作业:
P120第9题。
♥️ 一次函数的应用课件 ♥️
优点
1、教学目的明确,突出重点、基本完成教学任务。作业新颖,适中。
2、教态自然大方,语言、表情亲切,面部表情丰富。教师的声音应抑扬顿挫,有助于调动课堂气氛,引起学生的兴趣和注意。情绪控制较好,能较好的组织教学,教师的基本功扎实,能较好的起到示范的作用。
3、选题有趣味性、针对性强。选择贴近生活的中考题,并采用了灵活的形式组织教学,使整 个教学过程充满活力。
4、学生自主且自信。自主学习是建立在学生一定的知识基础上的'较高层次的学习活动,更是一种学习态度的体现。整个学习过程中学生的主动性较强,积极参与,积极表现,对自己的表现充满自信。
5、在讲授典型例题时,运用不同方式引导,重在启发引导,语言精确、形象,富于启发性,过渡流畅自然,板书加强了规范化要求;运用不同方式手段展示所学内容,生动而形象,化繁为简、使抽象变具体。
建议
1、进一步加强近几年我省相邻地区和课改地区中考试题研究。
2、立足教材,夯实基础,落实好基础知识,面向全体。
备注在课堂中如何创设情景让孩子们感受到我们所学的知识与生活机有着密切的联系。引导学生自由发挥他们的想象力,而不是一味的让以有的事物或形象局限了孩子们的想象力。想象无限,创意无限,从而引出无穷乐趣,快乐的学习!如何让孩子在课堂中感受快乐,在课后的自学中找到快乐,如何让学习成为一种快乐的体验?
♥️ 一次函数的应用课件 ♥️
标题: 探索数学一次函数的教学方法——基于实践和应用
引言:
数学是一门抽象而又实用的学科,而数学中的一次函数是数学中最基本且广泛应用的函数之一。了解和掌握一次函数的概念、性质和应用,对学生的数学素养和日常生活中的问题解决能力具有重要意义。本教案旨在通过以实践和应用为导向的教学方式,帮助学生更深入地理解和掌握一次函数,并在实际问题中应用得当。
一、教学目标:
1. 理解一次函数的概念、定义和基本性质;
2. 能够正确地利用一次函数建立模型,解决实际问题;
3. 能够利用一次函数的性质进行函数的应用拓展。
二、教学准备:
1. 教师准备PPT,提供一次函数的定义、性质和应用案例;
2. 准备足够数量的练习题或实际问题;
3. 准备计算机和互联网,以便学生参与教学活动。
三、教学过程:
步骤一:引入概念
1.通过PPT展示一次函数的定义和基本形式:y=ax+b,解释其中a和b的含义。
2.通过实际案例展示一次函数在现实生活中的应用,如汽车的行驶距离与时间的关系等。
步骤二:探索一次函数的性质
1.学生分组进行小组讨论,并总结一次函数的性质,包括函数的单调性、零点、图像和解的唯一性等。
2.请学生利用互联网资源,查找一次函数性质的相关实例,并与小组分享。
步骤三:应用案例分析
1.教师提供一些实际问题,涉及一次函数的应用,如购物满减、公式推导、简单经济模型等。
2.学生个别或小组探讨和解决这些问题,并从不同的角度解释答案的意义。
3.学生展示解题过程和结果,并相互评价。
步骤四:拓展应用
1.教师引导学生对一次函数的应用进行拓展,如勾股定理、简单抛物线模型等。
2.学生独立或小组进行相关拓展应用的研究,并展示自己的发现和结论。
3.学生评价他人的拓展应用,并相互交流心得和体会。
四、教学拓展:
1.教师鼓励学生自主学习,利用互联网资源和相关教材,深入了解一次函数的不同应用领域。
2.鼓励学生进行课外参观和实践活动,如调查房价与面积的关系等。
五、教学评价:
1. 根据学生在解决实际问题中的应用能力进行评价;
2. 通过小组和个别展示、讨论和评价,评估学生对于一次函数概念和性质的理解和掌握情况;
3. 结合课堂练习和作业,评价学生对于一次函数应用拓展的能力。
结语:
通过实践和应用为导向的教学方式,学生能更深入地理解一次函数的概念、性质和应用,同时也提高了学生的数学素养和实际问题解决能力。教师还应鼓励学生在自主学习和课外实践中,进一步拓展和应用一次函数理论,培养学生的创新思维和问题解决能力。
♥️ 一次函数的应用课件 ♥️
一次函数的图象和性质在实际生活中的应用十分广泛,有行程、温度、利润、电话费等问题,特别是与经济问题相关的问题是近几年各省市中考数学试题中的热点题型。能用一次决实际问题,对发展学生的数学应用能力和建模能力起着非常重要的作用。上完这节课后,我希望学生对这节课的内容能更加熟悉,能更加重视这部分内容;在利用图表信息得到与一次函数表达式有关数据的过程中,体会“数形结合”思想在数学应用中的重要地位。
上完这节课后,受到其他老师和区教研员肯定的是:
1、教态比较自然;课堂给予学生学习时间;学生学习积极性较强,不同层次的学生都在学习。
2、所选例题针对性较强,较有层次。
3、能够把学生出现的问题预测到了。
4、比较注重对学生做题的'常规要求,特别是要求学生作图用尺子和圆规。
5、比较注重学生的评价,不管是老师对学生,还是学生对学生的评价。
但也有很多不足的地方:
1、时间安排不够合理,在复习回顾所花的时间过多,这主要是跟我的习惯有关,对于学生讲过的内容,总是再重复一次,致使浪费了不必要的时间;以后上课要多在这些细节的地方注意,避免不必要的浪费时间;自己控制课堂时间的能力还有待加强。
2、学生紧张过度,自己调节能力功底不够,不能及时调节学生情绪,而给学生相互讨论的时间不够充裕,学生与学生,学生与老师之间交流互动的机会不够,致使课堂气氛沉闷。自己应该学会怎么去调控学生的情绪,这也是我今后应该重点学习的。
3、老师包办太多,对学生过于不放心。如在讲解如何求蜡烛燃烧剩下的高度h与燃烧时间t的函数关系式,学生回答:设y=kx+b,那时我就很着急,问:是y与x吗?这时学生就急急忙忙改为h=kt+b。我要的答案有了,但是却把学生的思路打乱了,用我的思路代替了学生的思路。所以用区教研员林日福老师的话说:不要不放心学生,要给学生犯错误的机会,只有他们自己犯的错,对他们才是最有价值的。
除了以上种种,我认为我需要改进的方面还有很多,特别在一些细节方面,如板书的规范,语言的规范等。一个老师所讲、所写不仅仅是给一个人听、一个人看,学生的一切言行都是以老师的言行做为楷模,所以做为老师更要做好示范。
课堂教学是一个动态的过程,学生的思维又常常受到课堂气氛、突发事件的影响,所学中让学生积极主动参与知识的形成过程,体验到新知识往往建立在旧知识的基础上,并且与一些旧知识还存在着紧密的联系,放手让学生运用转化的思想方法进行操作,使学生有效地理解和掌握一次函数的概念和应用,同时让他们获得了数学思想方法,并培养了学生探索问题的能力。
本节课的教学设计主要渗透转化的数学思想方法、数形结合的思想方法以及函数与方程(组)思想方法,让学生体验利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力;体验函数图象信息的识别与应用过程,发展学生的形象思维能力;理解一次函数及其图象的有关性质;初步体会方程与函数的关系,建立良好的知识联系;能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题,在合作与交流活动中发展学生的合作意识和能力。不过,所教班级中数学基础大多较差且缺乏学习积极性,针对这一特点,我上课时放慢了节奏,多叫学生回答问题,多安排学生间相互讨论,以激发学生学习动力。重点在点拨和解题规范上加以指导,所以教学效果还是比较令人满意的。
♥️ 一次函数的应用课件 ♥️
一次函数的概念、图象和性质,是这一章的重点。也是学习其他函数的重要基础,通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。教学完后,对新教材有了一些更深的认识。从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。通过课堂的实际实施感觉上也不是尽善尽美,还有许多令人不满意的地方。究其原因,教师不能就这节课的知识而教这点知识,教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。这样,教师才能灵活的把握课堂教学。而现在,教师缺乏的正是这一点,还是为了教而教。按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。从这一角度讲,教师应在把握知识的基础上。结合学生的表现,灵活多样的处理知识。
学生是学习的主体,学生活动是新教材的一大特点。新教材在知识安排上,往往从实例引入,抽象出数学模型。通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。侧重于学生能力的培养,让学生知道学什么,如何学。因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。一是通过画函数图象理解一次函数图象的形状。二是两点法画一次函数的图象。三是探究一次函数的图象与k、b符号的关系。在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。值得老师们探讨。为了达到上述目的,我把学生分成四个组,每个组探索一种情况,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。并根据每个组的表现给与一定的评价。如在活动一中,要求学生观察图象的形状,两条直线的位置关系。在活动二中,强调两点法(直线与坐标轴的交点)画直线。在活动三中,探究k、b符号与直线经过的象限与增减性的关系。学生目标明确,操作性强,受到了明显的效果。
本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。由函数图象的位置判断解析式中k、b符号。
概括一次函数图象的性质时,一定要结合函数的图像
一次函数y=kx+b有下列性质:
(1)当k>0时,y随x的增大而______,这时函数的图象从左到右_____;
(2)当k<0时,y随x的增大而______,这时函数的图象从左到右_____.
(3)当b>0时,这时函数的图象与y轴的交点在________.
(4)当b>0时,这时函数的图象与y轴的交点在_________.
一次函数的图像和性质节,很好的体现了数学中非常重要地数形结合的思想。这段内容的教学,还是从学生活动出发,从具体的实例研究起,观察图象的`位置和性质,在按照k、b的符号分类讨论,使学生建立起数形之间的联系。还要找到数形间的结合点,明确k的符号决定直线的什么位置,b的符号又决定了什么。为了加深学生对知识的理解,课上设计了由解析式画函数图象的草图,由草图的位置判断解析式中k、b的符号的练习,收到了很好的效果。
本节课从时间安排上有点前松后紧,这是我一贯的习惯,另外,在练习题的处理上,针对性练习不够充足,一些比较时尚的题型设计的的较少。
总之,作为一名数学教师,应在以后的教学中不断总结,不断创新
以上是我对本节课粗浅的看法,希望和同行们共勉。
♥️ 一次函数的应用课件 ♥️
各位评委老师:
你们好!
我是来自xx市兴凯湖乡中学的一名数学教师,姓名xxx。现任教数学学科。我今天参加说课大赛的题目是《一次函数图象的应用》。下面我说课开始,请各位评委对于不当之处给予批评指正。
新课程标准明确指出:数学教学的基本出发点是促进学生全面、持续、和谐的发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课的教学内容与学生的生活联系十分紧密,设计正是基于以上考虑而进行的。
一、教材分析:
1、教材内容所处的地位及作用
本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第六章第五节,课题为《一次函数图象的应用》。本节课为第一课时。其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。特别是在本节课中将要探索的“一次函数与一元一次方程的关系”,将为学生今后探索“一次函数与二元一次方程组的关系”以及“二次函数与一元二次方程的关系”起到重要的引领作用,这也将是本节课的一个难点问题。同时,本节课的重点就是要使学生体会数学知识与现实生活之间的密切联系,增强数学学习的应用意识。函数是描述客观世界变化规律的重要数学模型,在现实生活中有着广泛的应用,初中阶段,学生主要接触并学习三类函数,即一次函数、反比例函数和二次函数。最先学习的便是一次函数。在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。
在《数学课程标准》中,对于本节内容提出了明确的要求,另外,一次函数图象的应用这一知识点在学生中考中有着重要的作用。在中考中,对于函数知识的考查,主要放在了一次函数上,分值在13分左右,在整个初中数学知识体系中,这一分值比例是很大的。而在一次函数中,又主要考查学生对于一次函数图象的分析、解读以及应用其解决问题。我省中考题中,多年来必有一道分值在8分左右的大题(25题)是在考查学生应用一次函数的图象解决问题的意识和能力。以上几个方面足可以证明一次函数图象的应用所处的重要地位和作用。
2、教学目标:
⑴、知识与能力:
①、能通过函数图象获取信息,发展形象思维。
②、能利用函数图象解决简单的实际问题,发展学生的数学应用能力。
⑵、过程与方法:
①、在亲身的经历与实践探索过程中体会数学问题解决的办法。
②、初步体会方程与函数的关系,建立良好的知识联系。
⑶、情感态度与价值观:
①、进一步体会数学知识与现实生活的密切联系,丰富数学情感。
②、树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。
3、教学重点、难点及其确立的依据:
由于应用函数图象解决问题的关键是要很好地对给出的图象进行解读,将数学语言与生活语言进行互相转化,从图象中去获取信息,发现存在的已知条件进而去解决相应的数学问题。同时又考虑到一次函数图象的应用是学生在初中阶段所接触到的第一类函数图象的应用性问题,因此要求又不应过高,进而确立了本节课的重点;在难点问题的确立上,考虑到学生在学习中往往只注重当堂课的内容,而忽略知识之间的联系,特别是“数形结合”的学习意识还很淡薄,独立探索学习发现问题的能力还比较低,例如“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”学生就很难独立去发现,必须由教师进行引导发现,基于以上原因,进而确立了本节课的教学难点。具体为:
1、教学重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。
2、教学难点:体会函数与方程的关系,发展“数形结合”的思想。
二、学情状况分析:
1、学生现状:
针对自己对学生在学习过程中的了解情况,特别是在第六章《一次函数》前四节课内容的学习情况,分析当前学生现状如下:
⑴、学生们整体性的学习目的较为明确,在学习上有强烈的求知欲望。
⑵、学生整体上知识功底较好,在数学问题的解决上已初步形成了一定的方法。
⑶、学生们具有探索精神和实践的意识,在学习活动中有主动质疑的意识,有批判意识。敢于表达自己的观点和想法。
⑷、善于在亲身的经历体验中去获取数学的新知识,但在数学说理和数学证明上尚不规范,欠缺相应的经验。
2、知识情况:
本节课的核心任务是组织学生通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。
3、预期效果:
学生在利用一次函数图象解决简单的问题上不会有太大的困难,因为在第五章《位置的确定》中有关平面直角坐标系及第六章前四节的学习中,学生在知识储备上已完全具备。而在相关经验上他们在七年级下学期第六章《变量之间的关系》一章中也早有所获得。但在“数形结合” 、“数形转化”以及用数学语言规范答题甚至包括探索一元一次方程与一次函数之间关系方面会有一些困难。
另外,本节课的教学时间会十分紧张,自己在具体的课堂教学实践中将适时把握,恰当处理,以期达到效果。
三、教学方法及策略:
如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:
1、教学方法:
根据本节课的特点、目标要求及学生的实际情况,在教学方法上主要采用引导观察启发,组织实践探索交流、提问引导探索发现等方法进行本节课的教学活动。
2、教学的理论依据及教学策略
首先《数学课程标准》中明确要求在知识传授的同时,更要注重学生学习活动的过程以及相应的情感态度。将抽象的数学问题进行形象化、生活化是当前新一轮基础教育课程改革下所积极倡导的。因此紧密联系学生的生活经历和经验开展本节课的教学内容十分必要。将学生放在课堂教学的主体位置上,自己成为课堂的组织者、引导者并最终成为与学生的合作者是自己在本节课教学中的一个主导思想。
其次,数学作为基础性的自然学科,很多知识的获取必须通过耐心细致的观察,特别是本节课,主要是通过一次函数的图象去获取信息(已知条件)进而去解决问题,因此引导学生进行大量细致的观察活动是十分必要的,这也是对学生一种良好学习习惯的培养。实践是验证结论的办法,所以本节课还特别安排学生进行了相应的实践验证活动,但数学实践并不一定是具体的实物操作,完全可以利用教材、多媒体网络资源开展,本节课就是如此。
再次,充分引导组织学生参与学习活动中来,就必须要开展学生之间、师生之间的交流讨论与互动活动,因此本节课安排了一定的相关活动,使学生充分融入到学习活动中来。体现并凸现学生参与学习活动的过程。同时,探索发现新的结论是数学学科一重大特点,为了解决难点问题,在进行“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”这一问题的教学时,充分引导学生开展大胆质疑、主动探索、发现结论、解决问题、树立成就感等一系列活动,难点问题解决的同时,也培养了学生创新精神,也可以在某种程度上培养学生主动学习的探索意识。
本节课自己将充分依据《数学课程标准》中所倡导的教师角色,即在课堂教学中真正意义上地成为学生学习活动过程中的组织者、引导者和合作者。充分与学生开展互动活动,与他们共同质疑、共同困惑、共同寻求解决问题的办法。同时在组织学生进行实践的过程中引导学生积极开展交流讨论活动,实现生生间的互动。同时,对教材内容进行一定的创造性使用,以达到更佳的效果。
3、学习方法:
本节课在对学生进行学法指导上,主要是要求和引导学生采用实践探索的方法,进而培养学生数学学习的良好习惯,渗透终身学习的意识,培养学生们的创新精神,使他们体会到数学问题解决的严密性和规范性。指导学生对一次函数的图象进行耐心细致的观察,使学生充分意识到细致的观察、审清题意是应用一次函数图象解决问题的基础和关键,通过范例使学生亲身体会到明确函数图象中两坐标轴所表示的实际意义是解决此类问题的关键。通过该方法的学习培养,帮助学生积累学习方法的同时,也使他们养成耐心细致的学习习惯。交流讨论与合作关系是本节课学生学习活动过程中的重点,通过该学习方法,使学生们充分意识到在数学学习中要互相帮助、互相促进,体会到团队的力量大与个人力量。引导学生主动探索发现新的数学结论是本节课学生学习方法的另一个重要的方面,可以使学生敢于发表自己的独到观点和想法,在函数与方程的关系的学习中,在自己的引导启发下,充分尊重学生的观点及想法,通过实践验证,发现新结论,进而培养学生主动探索新知识,发现新问题的终身学习意识。同时也可以帮助学生树立起获取新知识后的成就感,增强数学学习的信心和兴趣。
四、教学程序:
本节课的教学程序由以下几个环节构成,即创设情境、初步感受、经历体验、探究发现、问题解决、收获体会共六大环节。
1、创设情境:
这是本节课的引入(导入)部分,借助于多媒体,展示兴凯湖美丽的自然风光(培养热爱家乡、热爱大自然的情感),过度到干旱的荒漠地带的图片,引起学生强烈的震撼,进而过度到吉林省吉林市一家苯化工厂发生爆炸造成松花江水污染的生活实例(渗透环抱教育)。在此基础上,利用水库水的逐渐干涸以及松花江水中苯含量会随时间的推移而逐渐减少直至完全消失为情境,引出课题,明确学习目标及任务。该导入设计,一方面贴近学生的生活实际,与本节课的内容恰到好处的自然融合,而且还对学生进行了思想教育,一举两得。
2、初步感受:
本环节主要是引导组织学生对一次函数图象应用的问题进行初步的感受,师引导学从已有的学习经验出发,利用大屏幕展示教材中的引例,提出环环相扣的问题,例如问题;图象中反映的是哪两个变量的关系?横轴表示的是什么?纵轴表示的是什么?你能从图象中获取哪些信息?你是如何获取的?等等。这一设计旨在使学生意识到如何去从函数的图象中去获取有效的信息进而去解决问题,同时在本环节中特别地引导学生将函数中的.数学语言向生活语言转化,这也是此类问题解决时学生必须处理好的关键环节,如果这两个方面的问题处理好了,学生解决此类问题就会更容易一些。其实本环节也是为学生打好基础的一个环节。既是新知识的学习环节,也是新知识的准备和铺垫的环节,该环节将对下面的学习起到至关重要的作用。同时本环节中学生将亲身体会到如何利用一次函数的图象解决问题。特别地借助于教材中的图象引导组织学生开展了猜想、实践等活动。整个环节中,自己始终利用大屏幕进行相应结论的直观展示,使课堂教学呈现形象化和直观化。
3、经历体验:
本环节是本节课的重点内容,即例题的学习解决的过程,也是应用一次函数的图象解决具体问题的过程,由于在上一个环节中学生已对此类问题有了亲身的感受,因此本环节虽是解答教材中的例题,但难度并不大,学生完全可以独立完成,特别本例题是一道摩托车行驶路程与油箱剩余油量关系的一次函数图象,与学生的生活经历密切联系,所以学生在解答中对题意的理解上不会出现问题。为了更好地使问题直观化和形象化,自己利用多媒体课件进行了动态演示,使学生直观地体验到了随着行驶路程的增加摩托车油箱内剩余油量在逐渐减少这一变化过程。因此本环节中自己将更多的时间留给了学生,由他们在交流讨论中独立地完成例题的解决。但由于本题描述的是“摩托车油箱中的剩余油量与摩托车行驶路程的关系”而并非“摩托车油箱中的消耗油量与摩托车行驶路程的关系”,如果学生审题不清很容易出现问题,对此自己事先积极进行了预防,并在此基础上特别提醒学生解决此类问题是要认真审题,确实发现图象中所反映的究竟是哪两个变量之间的关系,以免问题解决时出现错误。事实上这一点在上一个环节中已经进行了特别的强调。另外,将生活语言问题转化为数学函数图象语言问题也是本环节着力培养训练的内容,因为这是学生解决此类问题的一个突破点。由于学生在口头回答时会很容易,但用数学语言符号书写时会出现问题,因此,自己利用大屏幕特别出示了问题解答时规范的书面数学语言,帮助学生养成规范的数学学习习惯,明确数学学习的严谨性。在例题解决后,为了使学生更好地对此类问题进行合理的分析与解答,避免因审题不清而出现错误,自己还特别地提出了这样一个问题:“试一试:如果其它条件不变,我们想反映该摩托车消耗油量y(升)与行驶路程x(千米)之间关系的图象,在该图中应该是怎样的?”然后组织学生进行讨论解答,自己利用大屏幕给出正确答案。利用这种对比性教学,有利于加强学生思维能力的训练。
4、探究发现:
本环节主要是引导学生发现“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”。为了突破这一难点,自己在本环节中先出示了这样一个问题:观察图象回答问题
(1)当y=0时,x=()
(2)直线对应的函数表达式是()
由于在前面几节课中的学习,学生完全可以解决上面问题。在此基础上,组织学生解方程:y=0.5x+1。进而提出问题,你发现什么了?用自己的语言进行归纳。自己利用大屏幕给出规范化的结论:
①、从“数”的方面看,当一次函数y=0.5x+1的因变量的值为0时,相应的自变量的值即为方程0.5x+1=0的解。
②、从“形”的方面看,函数y=0.5x+1与x轴交点的横坐标,即为方程0.5x+1=0的解。
这种教学方法,从具体的实际问题入手,由特殊问题到一般规律的揭示,不仅解决了难点问题,而且从另外一个角度讲也渗透给了学生们在数学学习活动中如何探索并形成数学结论的方法。有利于学生主动探索意识的培养。
5、问题解决:
本环节主要是应用本节课所学的知识以及所积累形成的学习经验和体验解决问题的过程,即课堂巩固训练。在练习题的选择上,由简单到复杂。先是结合图象获取信息进行简单的填空和选择,然后进行了一道发散思维问题的训练,即让学生结合“龟兔赛跑”的故事在同一坐标系中大致画出龟兔赛跑的图象。主要是为了训练学生发散思维的意识和能力。同时考虑到本节课内容在中考中的重要性,自己特别地将20xx年xx市中考题进行了引导练习。
6、收获体会:
本环节主要是课堂小结的过程,引导学生从知识、学习过程(学习的经历、体验)、情感态度等方面进行归纳,主要由学生之间互相合作补充发言完成,对于学生忽略的地方自己进行引导性弥补。在此基础上布置本节课的作业,作业分为两部分,一方面布置一次函数图象应用的作业;一部分布置一次函数与一元一次方程关系的作业。
五、预期效果:
♥️ 一次函数的应用课件 ♥️
各位评委、老师们:
大家好!
今天能有这个展示的机会,得到各位评委、老师的指导,感到非常荣幸、
本节课的内容是《一次函数与二元一次方程(组)》,选自人教版教科书八年级上册第十四章,下面我将对这节课的教学设计加以说明、
这部分内容是在学生充分认识了一元一次方程、二元一次方程(组)和一元一次不等式的基础上,对一次运算进行更深入的讨论、用一次函数将上述几个数学对象统一起来认识,发挥函数对相关内容的统领作用、之前已经用两课时学习了一次函数与一元一次方程、一元一次不等式的关系,本节课是对一次函数与二元一次方程(组)关系的探究、
基于以上对教学内容的理解,结合我所教学生的特点,我确定本节课教学目标为:
1.理解一次函数与二元一次方程(组)的关系、
2.学习利用函数解决问题的方法,感受数学知识之间的内在联系,进一步体会数形结合的数学思想、
3.通过现实化的实际问题背景,反映祖国科技和经济的发展、
一、创设情境,提出问题
本课的教学过程分为五个环节完成、首先请看“创设情境,提出问题”的教学过程、(插入录像1)
设计意图:因为学生对刚学过的一次函数理解得还不够透彻,有一定的畏难情绪,并且他们对一元一次方程、二元一次方程(组)和一元一次不等式都很熟悉,因而缺乏学习这部分内容的热情,或者只是机械地背记结论,所以我从本课引入部分,就力求能马上吸引住学生。通过对一道七年级课本中曾经解决过的问题的再认识,使学生在认知上形成冲突,从而产生学习新知的需要;接着我设计了一个师生互动的游戏,使学生对老师是怎么迅速判断出方程组解的情况产生了强烈的好奇心,从而有了学习新知的强烈愿望、(插入录像2)
二、循序渐进,学习新知
1、进入新知的学习,我首先通过一段视频为学生创设了一个贯穿整节课的问题情境,使学生始终在倍感新鲜的环境中进行学习、本课新知由两部分构成,一是研究一次函数与二元一次方程的关系,二是研究一次函数与二元一次方程组的关系,下面请看第一部分的教学过程、(插入录像3)
设计意图:研究一次函数与二元一次方程的关系是本课的重点,如何实现从方程到函数的转化也是本课的难点、我没有仅停留在两者形式上的转化,而是从实际出发,通过设置一个个问题,引导学生直观感受变量,感受函数关系,从而自然实现了从二元一次方程,到一次函数的转化,突出了函数思想、
2、下面请看学生如何“研究一次函数与二元一次方程组的关系”、(插入录像4)
设计意图:因为已经研究了一次函数与二元一次方程的关系,所以学生完全可以通过独立思考、合作探究得到一次函数与二元一次方程组的关系、我仍然坚持从特殊到一般的探究方式,启发引导学生充分讨论特殊图象交点坐标的含义,从而自然的从“数”和“形”两方面加深了对二元一次方程组的理解、
三、剖析例题,巩固新知
为了帮助学生加深对所学内容的理解,我设计了下面的例题、(插入录像5)
设计意图:例题仍然坚持了本课统一的问题背景,教师鼓励学生自主探究、合作交流,课堂上学生分别运用一元一次方程、一元一次不等式、一次函数等三种方法求解了此题,并且对于各种解法的优劣、变量的取值范围和该如何画函数图象等方面都形成了讨论,接着由学生互相启发补充,予以解决、通过从不同的角度解决问题,既帮助学生巩固了对一次方程(组)、不等式和一次函数的关系的理解,又使学生获得了一些研究问题的方法和经验,发展了思维能力、
四、解决问题,加深认识
下面请看第四个环节“解决问题,加深认识”的教学过程、(插入录像6)
设计意图:本环节照应了引入部分,既解决了当时提出的问题,又引导学生在课下继续思考二元一次方程组解的情况与同一平面内两条直线不同位置之间的对应关系,从而更加深了对方程组解的图形解释的理解,切身感受到了数形结合思想的应用,为将来高中解析几何的学习做一些铺垫、
五、归纳小结,布置作业
接下来我引导学生从知识与方法两个方面总结本节课的学习,并给学生布置必做作业和选做作业、
这就是我对这节课的教学设计,其中难免有很多不足之处,真诚的希望得到各位老师的批评指正,以使我在今后的教学中加以改进、谢谢!
♥️ 一次函数的应用课件 ♥️
八年级数学一次函数教案(教学目标)
1、经历一般规律的探索过程,发展学生的抽象思维能力。
2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。
八年级数学一次函数教案(重难点)
教学重点:
正比例函数的概念及两者之间的关系。
2、 会根据已知信息写出一次函数的表达式。
教学难点: 一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、
八年级数学一次函数教案(课件教学过程)
一、创设问题情境,引入新课
1、 简单复习函数的概念(设在某一变化过程中有两个变量X和Y,如果 ,那么我们称Y是X的函数,其中X是自变量,Y是因变量)
2、 演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么?
3、 汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?
二、新课学习
1、 做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。
正比例函数的概念学习讨论:刚才写出的.两个关系式y=y=100-0.18x在形式上有什么相同之处?
让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量X与因变量Y的次数都是1;③从形式上看,形式都为y=kx+b,K,b为常数。
问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。
问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。
并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。
3、 例题学习
例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。
例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800
三、随堂练习
b的值。若不是一次函数,请说明理由。
A、y= +x B、y=-y=y=6-
2、已知函数y=(m+1)x+(m2-1),当m ,y是x的一次函数;当m ,y是x的正比例函数。
四、拓展应用
学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人y乙,解答下列问题:(
让学生归纳本节课学习内容:
正比例函数概念以及它们之间的关系。
2、会根据已知信息写出一次函数的关系式。
♥️ 一次函数的应用课件 ♥️
一、知识要点
y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数.
2、一次函数和正比例函数的概念
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠,特别地,当b=0时,称y是x的正比例函数.
说明: (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.
(中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数.
(3)当b=0,k≠0时,y=b仍是一次函数.
(4)当b=0,k=0时,它不是一次函数.
由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.
由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(,直线与x轴的`交点(- ,,(即可.
的性质(正比例函数的性质略)
(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;
②k﹤O时,y的值随x值的增大而减小.
(,|k|越小,直线与x轴相交的锐角度数越小(直线缓);
(负决定直线与y轴交点的位置;
①当b>0时,直线与y轴交于正半轴上;
②当b<0时,直线与y轴交于负半轴上;
③当b=0时,直线经过原点,是正比例函数.
(4)由于k,b的符号不同,直线所经过的象限也不同;
5、确定正比例函数及一次函数表达式的条件
(中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.
(中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.
6、待定系数法
先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.
7、用待定系数法确定一次函数表达式的一般步骤
(1)设函数表达式为y=kx+b;
(;
(3)求出k与b的值,得到函数表达式.
8、本章思想方法
(变化的观点来分析题中的数量关系,函数的实质是研究两个变量之间的对应关系。
(研究、解决问题的一种思想方法。
二、典型例题
例x +(m-4)是一次函数?
例与所挂物体的质量x(kg)之间的函数关系式,写出自变量x的取值范围,并判断y是否是x的一次函数.
例某物体从上午是时间t(时)的函数:M=t,则上午10时此物体的温度为 __ ℃.
例
(1)y是x的一次函数吗?请说明理由;在什么条件下,y是x的正比例函数?
(若正比例函数y=(x的图象经过点A(x和点B(x,当x.
♥️ 一次函数的应用课件 ♥️
教学目标
(一)知识认知要求
1、认识一元一次方程与一次函数问题的转化关系;
2、学会用图象法求解方程;
3、进一步理解数形结合思想;
(二)能力训练要求
1、通过一元一次方程与一次函数的图象之间的结合,培养学生的数形结合意识;
2、训练大家能利用数学知识去解决实际问题的能力。
(三)情感与价值观要求
体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的.作用。
教学重点与难点
1、理解一元一次不方程与一次函数的转化及本质联系。
2、掌握用图象求解方程的方法。
教学过程
一、提出问题
(1)方程2x+20=0;(2)函数y=2x+20
观察思考:二者之间有什么联系?
从数上看:方程2x+20=0的解,是函数y=2x+20的值为0时,对应自变量x的值
从形上看:函数y=2x+20与x轴交点的横坐标即为方程2x+20=0的解
根据上述问题,教师启发学生思考:
根据学生回答,教师总结:
由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某一个函数的值为0时,求相应的自变量的值。从图象上看,这相当于已知直线y=ax+b,确定它也x轴交点的横坐标的值。
二、典型例题:
例1、(书中例1)一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,再过几秒它的速度为17米/秒?
-
推荐阅读:
一次函数教案(优选五篇)
2025初二数学一次函数知识点总结(必备二篇)
第一次烙饼作文(必备十一篇)
第一次抉择作文(汇编十一篇)
第一次独自睡觉作文(系列十一篇)
最新一次一次的失望的短句(分享36句)
-
想了解更多一次函数的应用课件的资讯,请访问:一次函数的应用课件