平均数的课件(经典十篇)_平均数的课件
发布时间:2023-01-14平均数的课件(经典十篇)。
〖一〗平均数的课件
一、教学内容:平均数
二、教学目标:
1、经历探索平均数的过程,学会寻找平均数的方法——移多补少、先总后分,理解平均数的含义。
2、在运用平均数的知识解释简单的生活现象、解决简单的实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
三、教学重难点
重点:理解平均数的含义。
难点:会简单的求平均数的方法。
四、教学准备 多媒体课件。
五、教学过程
(一)导入新授
1、课件出示:
今天,我们就来深度认识一下“平均数”这个朋友。 板书课题:平均数。
(二)探索发现
1、教学例1。
(1)课件出示教材第90页例1统计图:
红星小学每周都要开展“爱心回收站,争做环保小卫士”的活动,下面是环保小分队的四名同学收集的矿泉水瓶如下(课件出示统计图)。
师:从统计图中,你能获得哪些数学信息?
学生交流后反馈:从统计图中,可以知道:小红收集了14个,小兰收集了12个,小亮收集了11个,小明收集了15个。
师:根据数学信息,你能提出什么数学问题?
生:他们一共收集了多少个?
小红比小兰多收集了几个? 平均每人收集了多少个?
教师从学生提出的问题中选择 求平均数的问题。
(2)解决问题:平均每人收集了多少个矿泉水瓶?
师:什么是平均?
生:平均就是每个人一样多。
师:你是怎样理解“平均每人收集多少个”的? 你会解决这个问题吗?如何解决?
怎样操作才能使每个人收集的瓶子个数一样多呢?小组交流探讨。教师巡视指导。 (3)汇报展示。
汇报预测: 方法一:移多补少,学生汇报,多媒体演示移多补少的过程。
师:像这样,在总数不变的前提下,把多的矿泉水瓶移出来,补给少的,使得每个人的矿泉水瓶数量同样多,这种方法叫移多补少,得到的这个相等的数叫做这几个数的平均数。
所以说13是14、12、11,15的平均数。
方法二:如果不动手操作,你能算出他们的平均数吗?把你的想法写在练习本上。 根据总数量÷总份数=平均数,得;(14+12+11+15)÷4=52÷4=13(个)。
(4)小结:我们可以用移多补少的方法求平均数;也可以用数据的总和除以数据的个数求出平均数。数据较少时,我们可以用移多补少的方法。数据较多时,用先求总数再求平均数的方法计算比较简便。
(5)区分“平均分”和“平均数”
教师追问:平均每人收集13个,是不是每个人真的都收集了13个?你是怎么理解“平均每人收集13个”这句话的? 师生交流后明确:“平均每人收集13个”表示每个人收集的数量可以比13个多,也可以比13个少,也可以刚好是13个。平均数是一个位于他们中间的数
①把52个矿泉水瓶平均分给4个人,每人分得几个?
②每人分到13个和平均每人收集13个,这两个“13”所表示的意义相同吗? 师生交流后小结:平均分是实实在在的量,平均数一组数据的平均值,是虚拟的量。
2、教学例2。
(三)巩固发散
1、指导学生完成教材第92页“做一做”。
学生独立完成,集体交流时说一说自己是如何求出平均数的。
2、四(1)班学生参加植树活动,第一组种了180棵,第二组种了166棵,第三组种了149棵,平均每组种了多少棵?
3、想一想:游泳池的平均水深是120厘米,小明身高130厘米,他在游泳池中学游泳,会不会有危险?为什么?
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:求平均数可以采用“移多补少”的方法,也可以先求几个数据的总和再除以这几个数的个数,所得的结果即为平均数。
(五)板书设计
六、教学后记 平均数
求平均数的方法:1.数据较少:移多补少法 常用方法:总数÷份数=平均数
〖二〗平均数的课件
教学要求:
1、通过练习,进一步巩固求平均数的方法。
2、使学生在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
教学重点:
解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
教具学具准备:
课件、统计。
教学过程:
一、理解平均数意义
“1”:说一说题目说的是一件什么事情?
平均水深140厘米是什么意思?是不是处处水深140厘米?
(不是,是有的地方比140厘米深,有的地方比140厘米浅)
“2”:自己看题,同桌讨论。
全班交流:
你认为哪些平均数是合理的,哪些是不合理的,为什么?
(1、3合理,2不合理)
二、求平均数的练习:
1、“3、4、6、7”题。
“3”:从表格里你了解到哪些信息?
独立解答(1)、(2),全班交流。
看了这张表格,你还想到了什么?你还能向大家说说哪些(1)和(2)题没能介绍的情况?
“4”:
(1)先算一算三年级平均每组植树的棵数。
假如今天算出的平均数是11棵,不计算,你能不能判断它是错的?为什么?
假如是6棵呢?为什么?
看着这张统计图,你能不能给出平均数的范围?
(2)哪些小组植树棵数比平均棵数多?哪些比平均棵数少?
“6”:(1)同桌讨论,可以怎么估计?
介绍自己是怎么估计的。
(选取6个数据中处于较中间位置的一个,再看看其他的移多补少后是否和它较接近,进行调整,学生有合理的方法也应给予肯定)
(2)你还能说出这个小组同学身高的哪些情况?
“7”:独立练习。
“你还发现什么?”尽量让学生从多角度说一说。
2、“5、8”题。
“8”:先说一说这一题的解决过程。
学生以小组为单位,调查、记录、解答问题。
“5”:课堂上老师指导说清要求,课后学生完成。
三、“你知道吗?”
举例:歌唱比赛,评委给一位歌手打分:47、78、80、81、82、82,如果不去掉一个最低分和一个最高分,那么这位选手的最后得分为?
学生计算:(47+78+80+81+82+82)÷6=75
去掉以后,是多少呢?
学生计算(78+80+81+82)÷4 约为80分
看一下评委给的打分,大部分是在80分左右,75分不能真正反映这个情况,怎么会出现这种情况呢,是有一位评委打分过低,所以为了保证最后的结果更客观、公平、合理,一般在评比打分时,会去掉一个最低分和一个最高分。
教学后记:第一题学生讨论十分激烈,最后还是得出了结论,下水是会有危险的,因为深水区可能会超过145厘米。由此强调,平均数在最大数和最小数的中间。
〖三〗平均数的课件
各位评委,大家好!
牐牻裉欤我的说课内容是人教版数学三年级下册第三单元第二部分内容《平均数》。
一、教材分析
《平均数》这个内容安排在《统计》这个单元之内,它是在学生认识条形统计图、并能根据统计图表进行简单的数据分析之后进行教学的。在统计中,平均数常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量,可以反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出整体之间的差别,可见平均数是统计中的一个重要概念,让学生学习的平均数的知识,不仅是为了掌握求平均数的方法,更重要的是理解平均数在统计学上的意义及对生活的作用更显重要。
二、学情分析:
我班90%的学生能看懂统计图表,能根据图表回答一些简单问题进行简单计算。80%的学生在解决问题的过程中能独立进行简单的有条理的思考,并具有初步的合作意识与合作能力,而平均数对于学生是一个全新的概念,需要充分利用教具学具课件等直观的演示帮助学生理解平均数。
三、学习目标
《课程标准》对这部分提出的要求是“通过丰富的实例,了解平均数的意义,会求简单数据的平均数(结果为整数)”。为此,教学中我们不能只停留在“简单地给出若干数据,让学生计算出它们的平均数”上,而应充分引导学生理解“平均数”概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在生活情境中运用它去解决实际问题,从而获得必要的发展。基于这样的认识,我制定了以下三条学习目标:
1、通过喜羊羊等钓鱼的例子,85%的学生能够解释平均数不是每只羊实际钓的数量而是所有羊钓到同样多的数量。
2、通过动手操作,合作探究,90%的学生能够用一组数据的和除以这组数据的个数得到平均数。
3、通过丰富的生活实例,85%的学生会用求平均数的方法解决问题,能与同伴交流自己对平均数的认识与理解。
四、学习重难点
基于以上的分析,我确定本课的教学重点是:理解平均数的意义,学会计算简单数据的平均数。
教学难点是:感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义。
五、教学策略
由于“平均数”的意义比较抽象,难以理解,容易使学生产生畏难情绪,因此,我将根据学生由感知到表象到抽象的认识规律创设丰富的生活情景,引导学生采用自主探究、观察发现、合作交流的学习方法,并恰当的运用课件优化教学,进而达到培养学生独立思考与合作交流的目的。
六、学习过程
(一)创设情境,初步感知
课一开始,我用多媒体出示这样的情景:“星期天,喜羊羊三个好伙伴一起去钓鱼。他们分别钓了6条、11条、4条。请你想个办法,使他们的鱼同样多。”由熟悉的生活情景引入,使学生体会到数学就在身边,生活中处处离不开数学,从而对数学知识产生亲切感,能更好地激发学生爱数学、学数学的兴趣。
接着让学生动手操作小棒,要求以最快的速度摆出结果,然后让学生闭上眼睛反思刚才的操作过程,概括出“移多补少”的方法。再用多媒体继续演示“又来了一个伙伴,他钓了11条”,让学生在头脑中想象“移”的过程并交流。我们知道“平均数”与“平均分”是不同的概念。因为平均分得的结果是一个实实在在的量,而平均数却只是一个表示中间状态的抽象数量。因而在教学时,我并未让学生进行操作,而是通过让学生在交流与想象中感受“平均数”的实际意义,为随后的深化作好预设。
学生的认识刚刚获得平衡,我又用多媒体巧妙设置冲突:“又来了四个伙伴,分别钓了10条、7条、9条、8条”,仍旧让学生在头脑中想象,学生觉得用“移多补少”的方法太麻烦了,该怎么办呢?[迫使他们自觉突破思维定势,换角度寻求解决问题的策略,从而获得求平均数的一般方法,]即“先合并再平分”,并要求列式计算,这个过程其实就是“数学化”的过程,它对于培养学生用数学的眼光观察、思考问题有着实际的意义。
最后,让学生为操作后得到的结果“7”起个名字,从而引出“平均数”及其含义。(目标1在此完成)
(二)联系生活,提出问题
在学生初步理解了“平均数”的含义后,我又联系学生熟悉的“买半票”引出身高的话题,让学生介绍一下自己的身高,随意抽取几位作比较。接着,我请第1组和第5组同学起立,再进行比较,学生发现高矮不一,不好比,想到把每人的身高加起来再比,又发现两组人数不一样,还是无法比较。
学生悬念顿生,思维处于积极兴奋的状态,我抓住时机设疑:“有没有更好的办法,能准确地比较出这两组同学哪组更高一些?”鼓励学生充分发表意见,引导总结出最佳方法是通过求他们的平均身高来比较。“学起于思,思源于疑。”通过问题情境的创设,为探索活动提供了动力,明确了方向,使学生进入“心求通而未得,口欲言而未能”的境界,激发了他们的探究欲望。
(三)自主探究,合作交流
明确了探究方向即求每一个小组的平均身高后,我便组织学生开展讨论:“要求每一小组的平均身高,要作哪些方面的准备工作?”让学生懂得要先收集每个同学的身高才能计算。源于学生身边真实的数学问题,正好激发了学生开展研究的兴趣,促使他们主动进行合作,以取得小组竞赛的胜利。
在音乐声中,以学生小组为单位开始了活动。允许学生离开座位,独立收集小组内每个同学的身高填入统计表中,计算出平均身高,然后在组内交流计算方法,统一结果,由组长填入汇总表中。这儿,我充分发挥学生的主体作用,放手让他们在开放的活动空间里自主探索,解决问题。我只是以参与者、合作者的身份融入他们的活动中,和他们平等相处,热心帮助他们处理突发事件,并及时获取反馈信息,在投影仪上展示交流各种计算方法,一一加以肯定,鼓励简便算法,并总结基本方法:总数/份数=平均数。紧接着激发学生思考:“第1小组的平均身高为138厘米,所以他们组每个同学的身高一定是138厘米。对吗?”通过辨析进一步理解平均数的意义,培养学生多角度看问题的能力。
最后引导学生观察表格,比较第3小组和第4小组哪组更高,使学生体验用自己的探索解决问题的成功。在此基础上,让学生继续挖掘表格中隐藏的信息,交流体会,提出新的问题“全班同学的平均身高是多少?”,让学生估算,再通过笔算验证,培养学生的估算能力。知道全班同学的平均身高后,我又顺势出示中国10儿童平均身高统计表,让学生联系自身实际进行比较,教育学生要积极锻炼,并且珍惜幸福的生活!(目标2在此完成,同时突破难点)
(四)实践运用,体验生活
第一层运用:学生用所学知识直接解决数学问题。
1、请计算14、12、11、15这四个数的平均数。
2、三年级四个班参加植树活动,第一天植树18棵,第二天植树20天,第三天植树22棵。平均每班植树多少棵?
第二层运用:数学来源于生活,又要应用于生活,才能体现其价值及魅力。在学生理解了“平均数”的含义,学会了求“平均数”的方法后,我又引入了以下现实情境:
1、小明班同学的平均身高是140厘米,所以他的身高一定是140厘米。对吗?
2、小明班上同学的平均身高是140厘米,小强班上同学的平均身高是137厘米,可以说小明一定比小强高吗?
3、游泳池的平均水深是130厘米,小明身高140厘米,他在游泳池中学游泳,会不会有危险?为什么?
通过情境的辨析,问题的解决,既深化了学生对“平均数”概念的认识,体会到“求平均数”在日常生活中的实际意义,同时也为学生创造了自由表达、广泛交流的机会,提升了他们“数学交流”的能力。
为了让学生感受平均数的用途广泛,我让学生自由交流生活中所见到过的平均数,再通过报刊新闻开扩学生的视野,体会平均数在各行各业中的广泛用途。 (目标3在此完成,突破难点)
(五)评价总结,拓展延伸
课末,我让学生当评委给这节课打分,当学生为最后得分争论不休时,及时设疑:“以谁的分数为标准呢?什么分数是最公正的?”引导学生主动运用所学知识解决问题。通过“给教师打分”及平均分的计算,既强化了本课的新知,再现了“求平均数”在生活中的实际应用,又使我得到真实的信息反馈,同时还为随后的课堂小结作了巧妙的预设。
最后,让学生谈谈这节课的收获,打算如何运用。让学生自我评价,增强学生数学学习的自信心;对课堂的拓展延伸,进一步激发学生继续探究的兴趣。
〖四〗平均数的课件
一、 复习铺垫,导入新课
小明利用五一假期,查找了一些有关小动物寿命的数据,并制作成了下面这张统计表。请同学们看大屏幕。
出示动物寿命统计表:
小猫老鼠大象乌龟
寿命/年6251152 提问:看了这张统计表,你发现了什么?(乌龟的寿命最长,老鼠的寿命最短。)
谈话:借助统计,我们常常能发现一些有趣的现象和规律。今天我们继续研究统计。(板书:统计)
【说明:利用动物寿命统计表这一学生感兴趣的材料,复习相关旧知,导入新课,自然贴切,有利于调动学生学习的积极性和主动性。】
二、 创设情境,自主探索
1. 呈现套圈情境。
多媒体演示“套圈比赛”的场景。
谈话:三年级第一小组的男、女生在进行套圈比赛,每人套15个圈,这两张统计图分别表示男生和女生套中的个数。
2. 引入平均数。
出示男、女生套圈成绩统计图。
①提问:从统计图中,你知道了什么?
结合学生的想法,相机进行引导。
想法一:男生有4人,女生有5人。(为比较总数预设)
想法二:男生每人套中的个数,谁来介绍女生没人套中的个数。
②男生套得准一些还是女生套得准一些?你有什么方法?
和你的同桌说说自己的想法。
想法一:女生套得准一些,因为套中的最多的是吴燕。
追问:那套中的个数最少是男生还是女生,所以套中最多的是女生,套中最少的也是女生。用一个人的成绩代表整个队的成绩,这样合适吗?还有其他的方法吗?
想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。
③追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?因为参与套圈的人数不相等,比较总数,是不公平的。
可以怎么办呢?
想法三:分别求出男、女生平均每人套中的`个数,哪个队平均每人套中的个数多,哪个队就套得准。(比平均数)。
追问:这样比公平吗?(公平)我们就用这种方法试一试。
【说明:富有启发性的“追问”,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】
4. 理解平均数。
④操作:你知道男生平均每人套中多少个圈吗?
请同学们仔细观察统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。
学生可能出现两种方法:一是移多补少;二是先求和再求平均数。
⑤引入:男生中谁套中得最多?谁套中得最少?根据这个信息,你有什么好方法求出男生平均每人套中多少个圈?
可以把张明套中的一个移给李小刚,另一个移给陈晓燕。——移多补少
反馈时,学生边讲解移多补少的过程,教师利用课件动态演示。
⑥还有其他的方法吗?
引导列式:6 + 9 + 7 + 6 = 28(个)⑦28表示什么?
28 ÷ 4 = 7(个)⑧7表示什么意思?(图中的红色线条就表示了男生套中的平均数)
⑨你能看出,7比谁套中的个数多?比谁套中的个数少?
小结:平均数比最大的数小,比最小的数大
【说明:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】
⑩提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?(在5~9之间)可以通过哪些方法来验证?
⑾谈话:女生平均每人套中多少个圈呢?你是怎样知道的?请你独立完成在书上。10+4+7+5+4=30(个)
30÷5=6(个)
⑿说说为什么要除以5而不除以4?(女生有5人,要用5人的总数平均分成5份)
⒀现在求出女生平均每人套中6个圈,是不是女生每人都套中6个呢?为什么?
仔细观察女生套圈成绩统计图,得出结论:平均数代表的是一个整体水平。
提问:现在你能判断男生套得准还是女生套得准吗?
⒁在解决男生、女生平均套中多少个圈这两个问题,有什么相同和不同?
相同:⑴求平均数的方法,得出数量关系。(板书:总数÷份数=平均数)
⑵平均数比最大的数小,比最小的数大大。
⑶平均数都是代表了一个整体的水平。
不同:总数不同,人数不同,平均数也不同。
〖五〗平均数的课件
平均数是统计中的一个重要概念,对于三年级的学生来说它非常抽象。以往在教学平均数的概念时,教师往往把教学重点放在平均数的求法上。新教材更重视让学生理解平均数的意义。基于这一认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决问题,了解它的价值。这节课我注重了以下几个方面:
一、创造有效的数学学习方式,理解平均数的意义和学会平均数的算法
求平均数的方法,一种是先合再分,一种是移多补少。由于生活经验和知识基础,学生中有一部分已经知道用移多补少的方法找出平均数,其实这种方法也能够利用教材上的统计图很好地进行过程的演示;还有一部分数感较强的学生,能够根据提供的一组数据感觉出平均数大概是多少;而用总数除以份数得到平均数的计算,也不难,学生肯定会有这种思维。平均数的概念比较抽象,很多人对平均数的含义不理解。于是我结合具体的实例“20xx年爸爸的月平均工资是20xx元”和“期末考试我们班的数学平均分是90分”来进行分析,让学生进一步理解平均数反映的是一组数据的总体情况是一个虚拟的数,而不是具体的真实数。通过学生对句子的解释可以看出学生对于“平均数”的表象已经逐步清晰起来。
二、练习具有坡度,循序渐进
第1个层次是引用课本上的例题,帮助学生理解平均数的意义及算法。第2个层次是计算一年平均每月的用水量,给出4个季度的用水量,目的让学生进一步感受计算平均数时,总数要与份数相对应。拓展题,小明的语文、数学、英语的平均分是95,语文96,数学93,英语多少分?目的是培养学生的逆向思维。
但在教学过程中也有很多不足,时间的安排及学生的把握不是很好,还有部分同学的计算频频出错,正确率的速度有待提高。
〖六〗平均数的课件
第一课时
一、教学目标:
1、使学生理解数据的权和加权平均数的概念
2、使学生掌握加权平均数的计算方法
3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:
1、重点:会求加权平均数
2、难点:对“权”的理解
3、难点的突破方法:
首先应该复习平均数的概念:把一组数据的总和除以这组数据的个数所得的商,叫做这组数据的平均数。复习这个概念的好处有两个:一则可以将小学阶段的关于平均数的概念加以巩固,二则便于学生理解用数据与其权数乘积后求和作为加权平均数的分子。
在教材P136“讨论”栏目中要讨论充分、得当,排除学生常见的思维障碍。讨论问题中的错误做法是学生常见错误,尤其是中差生往往按小学学过的平均数计算公式生搬硬套。在讨论过程中教师应注意提问学生平均数计算公式中分子是什么、分母又是什么?学生由前面复习平均数定义可答出分子是数据的总和、分母是数据的个数,这时教师可递进设疑:那么,题目中涉及的每个数据是每个占有耕地面积还是人均占有耕地面积呢?数据个数是指A、B、C三个县还是三个县的总人数呢?这样看来小明的做法有道理吗,为什么?
通过以上几个问题的设计为学生充分思考和相互讨论交流就铺好了台阶。 要使学生更好的去理解权的意义,可以再举一些生活、学习中的例子。比如:初二.五班有4个小组,在一次测验中第一组有7名同学得了99分,1名同学得了61分,第二组有1名同学得到了100分、7名同学得62分。能否由99?61100?62?得出第二小组平均成绩这样的结论?为什么?这个例子22
简单明了又便于学生想象理解,能够让学生从中体会到得99分的7个人比1个得61分的学生对平均成绩影响更大,从而理解权的意义。
在讨论栏目过后,引出加权平均数。最好让学生将公式与小学学过的平均数计算公式作比较看看意义上是否一致,这样做利于学生把新旧知识联系起来,利于对加权平均数公式的理解,也利于理解“权”的意义。
三、例习题意图分析
1、教材P136的问题及讨论栏目在教学中起到的作用。
(1)、这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式。
(2)、这个讨论栏目中的错误解法是初学者常见的思维方式,也是已学者易犯的错误。在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用。
(3)、客观上,教材P136的问题是一个实际问题,它照应了本节的前言——将在实际问题情境中,进一步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用。
(4)、P137的云朵其实是复习平均数定义,小方块则强调了权意义。
2、教材P137例1的作用如下:
(1)、解决例1要用到加权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。
(2)、这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解。
(3)、两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用。
3、教材P138例2的作用如下:
(1)、这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤。
(2)、例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生对权的意义的理解。
(3)、它也充分体现了统计知识在实际生活中的广泛应用。
四、课堂引入:
1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
求该校初二年级在这次数学考试中的平均成绩?下述计算方法是否合理?为什么?
x=1(79+80+81+82)=80.5 4
五、例习题分析:
例1和例2均为计算数据加权平均数型问题,因为是初学尤其之前与平均数计算公式已经作过比较,所以这里应该让学生搞明白问题中是否有权数,即是选择普通的平均数计算还是加权平均数计算,其次若用加权平均数计算,权数又分别是多少?例2的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权。
六、随堂练习:
1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占
2、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果求这些灯泡的平均使用寿命?
答案:1.x小关 =79.05 x小兵 =80 2. x =597.5小时
七、课后练习:
1、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为 .
2、某人打靶,有a次打中x环,b次打中y环,
则这个人平均每次中靶
3、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占
试判断谁会被公司录取,为什么?
4、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问该班有多少人? 答案:1.2x1?3x2?4x3?5x4ax?by2.3.x甲=86.9 a?bx1?x2?x3?x4
x2 =96.5
乙被录取
板书设计:
教学小记:
4. 39人
〖七〗平均数的课件
本节课的教学中可能存在的问题:
1、教师教学可能存在的问题:
(1)就本论本,不能很恰当地列举典型的、贴近学生生活 的现实例子,以具体的实际问题为载体,创设问题情景,提示概念:
(2)不能设计有效的数学问题,使学生通过有思维含量的数学引导学生对“权”的意义和作用有深刻的理解;
(3)过分强调知识人获得,忽略了统计思想的提示和统计观念的建立;
(4)对前两个学段中学生已经具的的相关平均数的知识经验了解不足,致使引入的问题太过简单或难度要求过高,导致学生的学习积极性不高。
2、学生学习中可能出现蝗问题:
(1)由于生活经验不足,同时受认知水平的影响,对抽象的“权”的意义和作用的理解 会有困难;
(2)尽管在第一、二学段已经学习了统计的简单知识,但对统计的意义和统计思想的理解尚处在比较粗浅的认识层面,另之对“权”理解 的困难,所以可能会感到这部分知识的学习比较抽象,缺少学习的激情。
〖八〗平均数的课件
求平均数是统计中的一个重要概念,它能较好的反映一组数据的总体水平,用来代表一组数据的平均水平。学习前,我先让学生课前统计出本小组同学的身高(单位cm)与体重(单位kg),做出统计表;课堂上再提出问题:比较两个不同小组人数的体重统计表,哪组同学的整体体重轻一些?学生会凭着自己原有的经验和判断,发表各自不同的见解,把需要解决的问题呈现在学生面前,激发起学生探索新知的热情。
在让学生理解平均数的概念就是“移多补少”,确定平均数的区间范围教学,让学生深刻理解平均数是表示一组数据的一般情况,并不表示一个实际存在的数量。再根据教学中收集矿泉水瓶的教学挂图实际操作,配以磁性黑板演示,突出平均数“移少补多”的简明、直观;在教学中充分让学生发表自己的摆法、算法,掌握求平均数的方法,初步理解“求平均个数就=总个数÷人数”。
在解决完例1以后,让学生再回到比较小组体重或身高的问题中,就能让学生很容易的理解平均数的概念,正确理解求平均数的方法,先确定平均数的范围,再计算,更突出了培养学生的估算能力。练习的设计注意联系学生的生活实际,使学生感受到"数学"就在我们身边,体现了数学的工具性。学生通过例1的学习,还可以分组总结出“求平均体重=总体重÷人数”,“平均身高=总身高÷人数”等,再现了"求平均数"在生活中的实际应用,教学中放手让学生动手摆一摆的方法,分组合作,再用算的方法来完成,体现了学生的自主性和差异性教育,体现了知识的发现过程,有利于知识的巩固与运用。
〖九〗平均数的课件
本单元重点理解“平均数”,对于四年级的学生来说,要从统计的角度去正确理解“平均数”的意义存在一定的困难。四年级学生的统计意识比较薄弱,他们的生活经验相对肤浅,而用统计的思想去理解“平均数”需要有一定的统计意识和一定的生活经验,而正是由于受到这两方面的不足,影响了学生对“平均数”意义的理解。因此教学中我在以下几个方面下了大功夫:
1、强调对平均数实际意义的理解。 《课程标准》4至6年级学段“概率与统计”领域的目标要求是:“通过丰富的实例,理解平均数的意义,会求数据的平均数,并解释结果的实际意义”。平平均数也叫算术平均数,主要用于描述统计对象的一般水平,平均数的大小与一组数据里的每个数据的大小均有关系,其中任何数据的变动都会相应引起平均数的变化。本单元首先通过两个篮球队队员的身高和体重的素材,帮助学生进一步理解“平均数”的意义和平均数的价值。
2、把读统计表、统计图贯穿于统计学习全过程。现在信息社会中,统计图、统计表已成为人们用来描述、表达信息的一种普遍的工具和手段,读懂统计表、统计图也成为信息时代每一个公民的基本素养,进而增强学生的数感和统计意识。
〖十〗平均数的课件
《求平均数》这节课如果按照传统的教学模式来上,基本上就是按照:出示例题、分析条件问题、引导列式计算、总结规律:总数÷份数=平均数。这样的一节课下来,孩子们对数量关系式:总数÷份数=平均数掌握得非常熟练,解题正确率也很高。但是这样的教学,忽视了孩子对平均数的认识和理解,为什么要学习平均数?它是怎么产生的?它有什么特点和作用?生活中什么地方要用平均数?这才是孩子们所关心的感兴趣的问题。我在设计这节课时,从孩子的发展出发,以孩子的发展为本,为孩子提供了适合他们发展的空间。这节课的设计与传统课有以下不同:
一、目标的着眼点不同。
这节课着眼于经历、体验、感受平均数的产生,理解平均数的本质意义,关注的是学习过程,让孩子学会思考,学会解题的策略,更加关注学生的情感态度和价值观。
二、呈现方式不同。
这节课让孩子在数学活动中学习,体验平均数产生的过程。在经历平均数产生的过程之中,自然而然地理解了平均数的本质意义,学会了求平均数的方法,然后再去用之解决生活中的实际问题,进一步感受平均数在生活中的作用,体验学习数学解决实际问题的乐趣。
三、教学方式、学习方式不同。
现在的课是让孩子在活动中“做数学”,给孩子提供大量的讨论合作、独立探索、实践操作的时间和空间,充分发挥学生的主体作用,让孩子们在“做中学”。
四、师生交往方式不同。
现在的课堂不只是师生互动,更有生生互动,老师以一个朋友的身份参与到孩子的学习活动中去,成为学生学习活动的指导者、组织者和合作者。孩子通过师生、生生之间的互动交流,思维自由发展,不仅学会了知识,形成了能力,同时学会了与人合作,与人交流。
五、应用形式不同。
今天的教学注重结合生活实际,让孩子解决身边的、有趣的、有意义的、富有挑战性的问题,学生学得有味道,不枯燥。孩子们用平均数的知识成功地解决了这些实际问题,体验到了成功的快乐,这才是我们的教学目的之所在。
总之,新的课程改革要求我们老师要以学生的发展为本,要给孩子提供自主探索的时间和空间。要变听数学、看数学为做数学,关注孩子在数学活动中学习,关注孩子独立思考与合作交流相结合,关注孩子对学习过程的经历和体验。教师要关注孩子知识技能的学习,更要关注情感态度和价值观,要给孩子以富有个性的评价,激励孩子学习数学的信心。这样我们的数学将不再枯燥,让我们的数字会跳跃,图形会唱歌,我们的数学从此富有生机,充满乐趣。
-
想了解更多平均数的课件的资讯,请访问:平均数的课件